

BRISTELL S-LSA

BRM AERO, s.r.o.

LETECKÁ 255 686 04 KUNOVICE CZECH REPUBLIC

Phone: +420 773 984 338 E-mail: <u>info@brmaero.com</u>

www.brmaero.com

BRISTELL S-LSA

Registration: **CC-AUV**

Serial Number: 317/2018

This airplane must be operated in compliance with information and limitations contained in herein. This AOI must be available on board of the airplane.

Date of Issue: 09/2017 Revision: 1

INTENTIONALLY LEFT BLANK

Date of Issue: 09/2017 Revision: 1

SECTION 0

- 0 Technical Information
- 0.1 Record of revisions
- 0.2 List of effective pages
- 0.3 Table of contents

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

0.1 Record of revisions

Any revision of the present manual (except actual weighing data, cockpit description and list of instruments and avionics) must be recorded in the following table.

Revision No.	Affected Section	Affected Pages	Date of Issue	Approved by	Date of approval	Date inserted	Sign.
-	ALL	ALL Initial issue	01/2016	Petr Javorský	01/2016	01/2016	P.Javorský
1	0,2,3, 5,7,8,9	i,ii, 0-1 to 0-6, 2-10, 3-1,3-9,4-9,5-3 to 5-10, 7-6,7-9,7-10,8-2,8-3, 8-4,9-2 to 9-6.	09/2017	Petr Javorský	09/2017	09/2017	P.Javorský frakt Pate

Date of Issue: 09/2017 Revision: 1

0.2 List of effective pages

Section	Page	Date of Issue	Section Page		Date of Issue
	Title page	01/2016	3	3-1	09/2017
	i	09/2017		3-2	01/2016
0	ii	09/2017		3-3	01/2016
	0-1	09/2017		3-4	01/2016
	0-2	09/2017		3-5	01/2016
	0-3	09/2017		3-6	01/2016
	0-4	09/2017		3-7	01/2016
	0-5	09/2017		3-8	01/2016
	0-6	09/2017		3-9	09/2017
1	1-1	01/2016		3-10	01/2016
	1-2	01/2016			
	1-3	01/2016	4	4-1	01/2016
	1-4	01/2016		4-2	01/2016
	1-5	01/2016		4-3	01/2016
	1-6	01/2016		4-4	01/2016
				4-5	01/2016
2	2-1	01/2016		4-6	01/2016
	2-2	01/2016		4-7	01/2016
	2-3	01/2016		4-8	01/2016
	2-4	01/2016		4-9	09/2017
	2-5	01/2016		4-10	01/2016
	2-6	01/2016		4-11	01/2016
	2-7	01/2016		4-12	01/2016
	2-8	01/2016			
	2-9	01/2016			
	2-10	09/2017			

Date of Issue: 09/2017 Revision: 1

Section	Page	Date of Issue	Section	Page	Date of Issue
5	5-1	01/2016		7-6	09/2017
	5-2	01/2016		7-7	01/2016
	5-3	09/2017		7-8	01/2016
	5-4	09/2017		7-9	09/2017
	5-5	09/2017		7-10	09/2017
	5-6	09/2017			
	5-7	09/2017			
	5-8	09/2017	8	8-1	01/2016
	5-9	09/2017		8-2	09/2017
	5-10	09/2017		8-3	09/2017
				8-4	09/2017
6	6-1	01/2016			
	6-2	01/2016			
	6-3	01/2016	9	9-1	01/2016
	6-4	01/2016		9-2	09/2017
	6-5	01/2016		9-3	09/2017
	6-6	01/2016		9-4	09/2017
	6-7	01/2016		9-5	09/2017
	6-8	01/2016		9-6	09/2017
7	7-1	01/2016	10	10-1	01/2016
	7-2	01/2016		10-2	01/2016
	7-3	01/2016		10-3	01/2016
	7-4	01/2016		10-4	01/2016
	7-5	01/2016			

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

0.3 Table of contents

	Section
TECHNICAL INFORMATION	0
GENERAL INFORMATION	1
OPERATING LIMITATIONS	2
EMERGENCY PROCEDURES	3
NORMAL PROCEDURES	4
PERFORMANCE	5
WEIGHT AND BALANCE	6
AIRPLANE AND SYSTEMS DESCRIPTION	7
AIRPLANE HANDLING,SERVICING AND MAINTENANC	E 8
REQUIRED PLACARDS AND MARKINGS	9
SUPPLEMENTS	10

Date of Issue: 09/2017

INTENTIONALLY LEFT BLANK

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

SECTION 1

1	General	Inform	nation
	General		IGLIVI

- 1.1 Introduction
- 1.1.1 Certification basis
- 1.2 Warnings, cautions and notes
- 1.3 Descriptive data
- 1.3.1 Aircraft description
- 1.3.2 Power plant
- 1.3.3 Aircraft dimensions
- 1.3.4 Aircraft layout
- 1.4 Definitions and abbreviations

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

1.1 Introduction

This Aircraft Operating Instruction has been prepared to provide pilots with information for the safe and efficient operation of BRISTELL S-LSA aircraft. It also contains supplemental data supplied by the Aircraft Flight Training Supplement.

1.1.1 Certification basis

BRISTELL S-LSA is a special light sport category aircraft made by BRM Aero, s.r.o., Uherske Hradiste, Czech Republic, based on the following airworthiness standards:

- ASTM F2245 Consensus standard for Light Sport Aircraft category plus other applicable ASTM Consensus Standards.
- Czech LAA UL-2
- EASA CS-VLA

1.2 Warnings, cautions and notes

The following definitions apply to warnings, cautions and notes in the Pilot Operating Handbook.

WARNING

Means that the non-observation of the corresponding procedure leads to an immediate or important degradation of the flight safety i.e. to injury or death of persons.

CAUTION

Means that the non-observation of the corresponding procedure leads to a minor or possible long term degradation of the flight safety.

NOTE

Draws attention to any special item not directly related to safety, but which is important or unusual.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

1.3 Descriptive data

1.3.1 Aircraft description

BRISTELL S-LSA is airplane intended especially for recreational and cross-country flying, basic training, and non-aerobatics operation.

BRISTELL S-LSA is a single-engine, all metal, low-wing monoplane of semi-monocoque construction with two side-by-side seats. The airplane is equipped with a fixed tricycle undercarriage with steerable nose wheel.

1.3.2 Power plant

The standard power plant is composed of ROTAX 912 ULS (98.6 hp), 4-cylinder, 4-stroke engine and FITI three blade ground adjustable propeller. BRISTELL S-LSA, S/N 317/2018 is fitted with:

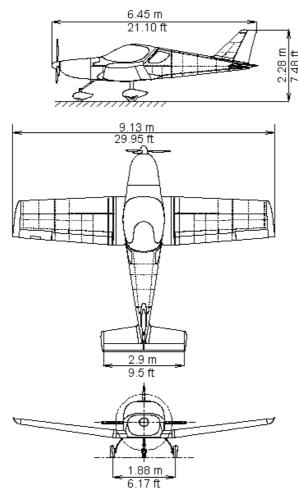
- Rotax 912 ULS 2
- Fiti Eco Competition 3LR 158, on-ground adjustable, 3-bladed propeller with composite blades

1.3.3 Aircraft dimensions

Wing span	9.13	m	29.95	ft
Length	6.45	m	21.10	ft
Height	2.28	m	7.48	ft
Wing area	11.5	m^2	123.79	sq ft
Wing loading	52.17	kg/m²	10.66	lb/sq ft
Cockpit width	1.3	m	51.17	in

Deflections:

Dudden deflections


Rudder deflections	30 to each side
Elevator deflections	+ 30°/- 15°
Aileron deflections	+ 24°/-16°
Flap deflections	0°, 10°, 20°and 30°
Aileron trim deflections	+ 15°/- 20°
Elevator trim deflections	+ 10°/- 25°

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

1.3.4 Aircraft layout

Date of Issue: 01/2016

Document No.: LSA-AOI-2-1-0-CL

Revision: -

Aircraft Operating Instructions

1.4 Definitions and abbreviations

°F temperature in degree of Fahrenheit

AOI Aircraft Operating Instructions

ASI Airspeed Indicator
ATC Air Traffic Control

BEACON anti-collision beacon
CAS Calibrated Airspeed

CG Center of Gravity

COMM communication transmitter

EFIS Electronic Flight Instrument System
ELT Emergency Locator Transmitter

EMS Engine Monitoring System

ft foot / feet

ft/min feet per minute

GPS Global Positioning System

hp power unit

IAS Indicated Airspeed

IC Intercom

IFR Instrument Flight Rules

in inch

ISA International Standard Atmosphere

knot NM per hour

LAA Light Aircraft Association of the Czech Republic

lb pound

MAC Mean Aerodynamic Chord

max. maximum

min. minimum or minute mph statute miles per hour

Date of Issue: 01/2016 Revision: -

NM Nautical Mile

OAT Outside Air Temperature

OFF system is switched off or control element is in off-position
ON system is switched on or control element is in on-position

POH Pilot Operating Handbook

psi pound per square inch - pressure unit

ROC Raet-of-climb

rpm revolutions per minute

sec. second

US gal volume unit

V_A maneuvering airspeed

V_{FE} maximum flap extended speed

VFR Visual Flight Rules

VMC Visual Meteorological Conditions

V_{NE} never exceed speed

V_{NO} maximum designed cruising speed

V_{S1} stall speed with wing flaps in retracted position V_{SO} stall speed with wing flaps in extended position

Vx best angle of climb speed VY best rate of climb speed

Date of Issue: 01/2016 Revision: -

BRISTIELL SALSA

Aircraft Operating Instructions

SECTION 2

2	Operating	Limitation
---	-----------	------------

- 2.1 Introduction
- 2.2 Airspeed
- 2.3 Airspeed indicator markings
- 2.4 Power plant
- 2.4.1 Engine operating speeds and limits
- 2.4.2 Fuel
- 2.4.3 Oil
- 2.4.4 Coolant
- 2.5 Power plant instrument markings
- 2.6 Miscellaneous Instrument Marking
- 2.7 Weight
- 2.8 Center of gravity
- 2.9 Approved maneuvers
- 2.10 Maneuvering load factors
- 2.11 Crew
- 2.12 Kinds of operation
- 2.13 Other limitations

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

2.1 Introduction

Section 2 includes operating limitations, instrument markings and basic placards necessary for the safe operation of the aircraft, its engine, standard systems and standard equipment.

2.2 Airspeed

Airspeed limitations and their operational significance are shown below:

Speed		IAS (km/h)	KIAS	Remarks
V _{NE}	Never exceed speed	290	157	Do not exceed this speed in any operation.
V _{NO}	Max. structural cruising speed	240	129	Do not exceed this speed except in smooth air, and then only with caution.
V _A	Maneuvering speed	180	96	Do not make full or abrupt control movement above this speed, because under certain conditions full control movement may overstress the aircraft.
V _{FE}	Maximum Flap Extended Speed	139	75	Do not exceed this speed with flaps extended.

Date of Issue: 01/2016 Revision: -

2.3 Airspeed indicator markings

Airspeed indicator markings and their color-code significance are shown below:

Marking	IAS value	or range	Significance
Warking	km/h	knots	Significance
White arc	62-139	33-75	Flap Operating Range.
Green arc	80-240	43-129	Normal Operating Range.
Yellow arc	240-290	129-157	Maneuvers must be conducted with caution and only in smooth air.
Red line	290	157	Maximum speed for all operations.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

2.4 Power plant

2.4.1 Engine operating speeds and limits

Engine Model:		ROTAX 912 ULS 2	
Engine Manu	facturer:	Bombardier-Rotax GMBH	
7	Max Take-off:	100 hp at 5800 rpm, max.5 min.	
Power	Max. Continuous:	92.5 hp at 5500 rpm	
4	Cruising:	68.4 hp at 5000 rpm	
	Max. Take-off:	5800 rpm, max. 5 min.	
Engine RPM	Max. Continuous:	5500 rpm	
Eng	Cruising:	5000 rpm	
	Idling:	~1400 rpm	
6	Minimum:	50 °C (122 °F)	
Cylinder head temperature (CH1 Older engines S/N <u>without</u> Suffix -01	Maximum:	135 °C (275 °F) conventional coolant - permanent monitoring of coolant temperature and CHT is necessary Waterless coolant - permanent monitoring of CHT is necessary	
	Optimum:	80 – 110 °C (176-230 °F)	
t (CT) nes h	Minimum:	50 °C (122 °F)	
Coolant temperature (C) New engines S/N <u>with</u> Suffix -01	Maximum:	120 °C (248 °F) only conventional coolant allowed	
tempe Nev S	Optimum:	80 – 110 °C (176-230 °F)	
ture	Minimum:	50 °C (122 °F)	
Oil temperature	Maximum:	130 °C (266 °F)	
tem	Optimum:	90 – 110 °C (190-230 °F)	
ıre:	Minimum:	0.8 bar (12 psi) - <i>below 3500 rpm</i>	
Oil pressure:	Maximum:	7 bar (102 psi) - cold engine start	
pr	Optimum:	2 - 5 bar (29 – 73 psi) - above 3500 rpm	
Exhaust gases temp.	Maximum:	880 ° C (1616 °F)	

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

242 Fuel

General note

NOTICE

Obey the local codes and the latest edition of Service Instruction SI-912-016 for the selec-

tion of the correct fuel.

NOTICE

Use only fuel suitable for the respective climatic zone.

NOTE:

Risk of vapour formation if using winter fuel for

summer operation.

Knock resistance

The fuels with following specifications can be used:

Fuel specifikationen			
	Usage/Description		
Knock resistance	912 A/F/UL	912 S/ULS	
	Min. RON 90 (min. AKI* 87)	Min. RON 95 (min. AKI* 91)	

Anti Knock Index (RON+MON)/2

MOGAS

	Usage/Description		
Mogas	912 A/F/UL	912 S/ULS	
European standard	EN 228 Normal		
	EN 228 Super	EN 228 Super	
	EN 228 Super plus	EN 228 Super plus	

AVGAS

AVGAS 100LL places greater stress on the valve seats due to its high lead content and forms increased deposits in the combustion chamber and lead sediments in the oil system.

	Usage/Description		
AVGAS	912 A/F/UL	912 S/ULS	
Aviation Standard	AVGAS 100 LL (ASTM D910)	AVGAS 100 LL (ASTM D910)	

Fuel volume:

Wing fuel tank volume2x60 I 2x16 US gal Unusable fuel quantity2x0.5 I 2x0.13 US gal

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

2.4.3 Oil

General note

NOTICE

Obey the manufacturers instructions about the lubricants.

If the engine is mainly run on AVGAS more frequent oil changes will be required. See Service Information SI-912-016, latest edition

Oil type

For the selection of suitable lubricants refer to the Service Information SI-912-016, latest edition.

Oil consumption

Max. 0.06 l/h (0.13 liq pt/h).

Oil specification

- Use only oil with API classification "SG" or higher!
- Due to the high stresses in the reduction gears, oils with gear additives such as high performance motor cycle oils are required.
- Because of the incorporated overload clutch, oils with friction modifier additives are unsuitable as this could result in a slipping clutch during normal operation.
- Heavy duty 4-stroke motor cycle oils meet all the requirements. These oils are normally not mineral oils but semi- or full synthetic oils.
- Oils primarity for Diesel engines have insufficient high temperature properties and additives which favour clutch slipping, and are generally unsuitable.

Oil viscosity

Use of multi-grade oils is recommended.

NOTE:

Multi-viscosity grade oils are less sensitive to temperature variations than single grade oils.

They are suitable for use throughout the seasons, ensure rapid lubrication of all engine components at cold start and get less fluid at higher temperatures.

NOTE

Type of oil used by aircraft manufacturer is shown in Section 10 Supplement No.2.

Oil volume:

Minimum	3.2 l	0.856 US gal
Maximum	3.6 I	0.951 US gal

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

2 4 4 Coolant

General note

NOTICE

Obey the latest edition of Service Instruction SI-912-016 for the selection of the correct coolant.

Conventional coolant

Conventional coolant mixed with water has the advantage of a higher specific thermal capacity than water-less coolant.

Application

When correctly applied, there is sufficient protection against vapor bubble formation, freezing or thickening of the coolant within the operating limits.

Use the coolant specified in the manufacturers documentation.

Mixture

NOTICE

Obey the manufacturers instructions about the coolant.

Applicable for engine S/N without Suffix -01.

	mixture ratio %		
designation	concentrate	water	
conventional e.g. BASF Glysantine anticorrosion	50*	50	
waterless e.g. Aero Cool 180°	100	0	

^{*} coolant component can be increased up to max. 65%.

Applicable for engine S/N with Suffix -01.

	mixture ratio %	
designation	concentrate	water
conventional e.g. BASF Glysantine anticorrosion	50*	50

^{*} coolant component can be increased up to max. 65%.

NOTE

Type of coolant used by aircraft manufacturer is shown in Section 10 Supplement No.2.

Coolant liquid volume:

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

2.5 Power plant instrument markings

Analogue engine instruments markings and their color-code significance are shown below.

Rotax 912 ULS 98.6 hp	Minimum Limit (red line)	Normal Operating Range (green arc)	Caution Range (yellow arc)	Maximum Range (red line)
Engine speed RPM]	1400	1400-5500	5500-5800	5800
Oil Temperature	50 °C	50-110 °C	110-130 °C	130 °C
	(122 °F)	(122-230 °F)	(230-266 °F)	(266 °F)
Exhaust Gases	-	800-850 °C	850-880 °C	880°C
Temp. (EGT)		(1472-1562 °F)	(1562-1616 °F)	(1616 °F)
Older engines S/N <u>without</u> Suffix -01 Cylinder Head Temperature (CHT) Conventional and waterless coolant allowed	50 °C	50-110 °C	110-135 °C	135 °C
	(122 °F)	(12-230 °F)	(230-275 °F)	(275 °F)
New engines S/N with Suffix -01 Coolant Temperature (CT) Only conventional coolant allowed	50°C	50-110°C	110-120 °C	120 °C
	(122°F)	(122-230°F)	(230-248 °F)	(248 °F)
Oil Pressure	0.8 bar (12 psi)	0.8-5 bar (12-73 psi)	5-7 bar (73-102 psi)	7 bar (102 psi) cold engine starting

CAUTION

Older engines (S/N without Suffix -01) require permanent monitoring of both CHT and CT when conventional coolant is used. Permanent CHT monitoring is necessary when waterless coolant is used.

New engines (S/N with Suffix -01) require permanent monitoring of CT.

Only conventional coolant is allowed for them.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

2.6 Miscellaneous Instrument Marking

There is not any miscellaneous instrument marking.

2.7 Weight

2.8

Empty weight (standard equipment) . 325	kg	715	lb
NOTE			
Actual empty weight is shown in SECTION	ON 6		
Max. take-off weight 600	kg	1320	lb
Max landing weight600	kg	1320	lb
Weight of fuel (120 I, 16 US gal) 87	kg	209	lb
Maximum baggage weight:			
Baggage compartment behind seats15	kg	33	lb
Wing lockers (optional)20	kg	44	lb each
Front locker (optional)10	kg	22	lb
Center of gravity			
Operating C.G. range25	to 35	% of MAC	;

2.9 Approved maneuvers

Airplane Category: LSA

The BRISTELL S-LSA is approved for normal and below listed maneuvers:

- Steep turns not exceeding 60° bank
- Lazy eights
- Chandelles
- Stalls (except whip stalls)

WARNING

Aerobatics and intentional spins are prohibited!

2.10 Maneuvering load factors

Maximum positive limit load factor......+4 g Maximum negative limit load factor......-2 g

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

2.11 Crew

WARNING

Do not exceed maximum take-off weight 600 kg (1320 lb)!

2.12 Kinds of operation

There are permitted Day VFR flights.

Night VFR flights and IFR flights under VMC are permitted if the aeroplaneis appropriately equipped (e.g. FAR 91.205) and when the pilot has appropriate rating.

WARNING

IFR flights under IMC and intentional flights under icing conditions are PROHIBITED!

Minimum instruments and equipment list for VFR flights:

- Airspeed indicator
- Altimeter
- Compass (is not required by ASTM F 2245)
- Fuel quantity indicator
- Tachometer (RPM)
- Oil temperature indicator
- Oil pressure indicator
- Cylinder head temperature indicator (Coolant temp indicator)

2.13 Other limitations

WARNING

No smoking on board of the aircraft!

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

SECTION 3

3	EMERGENCY PROCEDURES
3.2	Engine Failure
3.2.1	Engine failure during take-off run
3.2.2	Engine failure during take-off
3.2.3	Engine failure in flight
3.3	In-flight Engine Starting
3.4	Smoke and Fire
3.4.1	Fire on ground at engine starting
3.4.2	Fire on ground with engine running
3.4.3	Fire during take-off
3.4.4	Fire in flight
3.4.5	Fire in the cockpit
3.5	Glide
3.6	Landing Emergencies
3.6.1	Emergency landing
3.6.2	Precautionary landing
3.6.3	Landing with a flat tire
3.6.4	Landing with a defective landing gear.
3.7	Recovery from Unintentional Spin
3.8	Other Emergencies
3.8.1	Vibration
3.8.2	Carburetor icing
3.8.3	Autopilot malfunction

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

3.1 Introduction

Section 3 provides checklists and amplified procedures for coping with various emergencies that may occur. Emergencies caused by aircraft or engine malfunction are extremely rare if proper pre-flight inspections and maintenance are practiced.

However, should an emergency arise, the basic guidelines described in this section should be considered and applied as necessary to correct the problem.

3.2 Engine Failure

3.2.1 Engine failure during take-off run

Throttle - reduce to idle
 Ignition - switch off

3. Apply brakes

3.2.2 Engine failure during take-off

1. Speed - gliding at 120 km/h (65 KIAS)

2. Altitude - below 150 ft: land in take-off direction

- over 150 ft: choose a landing area

Wind - find direction and velocity

Landing area - choose free area without obstacles

5. Flaps - extend as needed

6. Fuel Selector - shut off7. Ignition - switch off8. Safety harness - tighten

9. Master switch - switch off before landing

10. Land

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

3.2.3 Engine failure in flight

1. Push control stick forward

2. Speed - gliding at 120 km/h (65 KIAS)

3. Altitude - below 150 ft: land in take-off direction

- over 150 ft: choose a landing area

4. Wind - find direction and velocity

5. Landing area - choose free area without obstacles

6. Flaps - extend as needed

7. Fuel Selector - shut off8. Ignition - switch off

9. Safety harness - tighten

10. Master switch - switch off before landing

11. Land

3.3 In-flight Engine Starting

1. Electric pump - ON

2. Fuel Selector - switch to second fuel tank

3. Starter - switch on

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

3.4 Smoke and Fire

3.4.1 Fire on ground at engine starting

Starter - keep in starting position

Fuel Selector - close
 Throttle - full power
 Ignition - switch off

5. Leave the airplane

6. Extinguish fire by a fire extinguisher (if available) or call for a firebrigade if you cannot do it.

3.4.2 Fire on ground with engine running

Heating - close
 Fuel selector - close
 Throttle - full power
 Ignition - switch off

5. Leave the airplane

Extinguish fire by a fire extinguisher (if available) or call for a firebrigade if you cannot do it.

3.4.3 Fire during take-off

1. Speed - 120 km/h (65 KIAS)

Heating - close
 Fuel Selector - close
 Throttle - full power
 Ignition - switch off

6. Land and stop the airplane

7. Leave the airplane

8. Extinguish fire by a fire extinguisher (if available) or call for a firebrigade if you cannot do it.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

3.4.4 Fire in flight

Heating - close
 Fuel Selector - close

3. Throttle - full power4. Master switch - switch off

Ignition - switch off after the fuel in carburetors is consumed and engine shut down

6. Choose of area - heading to the nearest airport or choose

7. emergency landing area

8. Emergency landing - perform according to 3.6

9. Leave the airplane

10. Extinguish fire by a fire extinguisher (if available) or call for a firebrigade if you cannot do it.

NOTE

Estimated time to pump fuel out of carburetors is 30 seconds.

WARNING

Do not attempt to re-start the engine!

3.4.5 Fire in the cockpit

Master switch - switch off
 Heating - close
 Use a fire extinguisher (if available)

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

3.5 Glide

An example of the use of gliding is in the case of engine failure

Speed - recommended gliding speed
 120 km/h (65 KIAS)

120 KIII/II (03 KIAO

3.6 Landing Emergencies

3.6.1 Emergency landing

Emergency landings are generally carried out in the case of engine failure and the engine cannot be re-started.

Speed - adjust for optimum gliding 120 km/h
 (65 KIAS)

Trim - adjust
 Safety harness - tighten

Flaps - extend as needed

5. COMM - if installed then report your location if

possible

6. Fuel Selector - close7. Ignition - switch off8. Master switch - switch off

Perform approach without steep turns and land on chosen landing area.

3.6.2 Precautionary landing

A precautionary landing is generally carried out in the cases where the pilot may be disorientated, the aircraft has no fuel reserve or possibly in bad weather conditions.

- 1. Choose landing area, determine wind direction
- 2. Report your intention to land and land area location.
- Perform low-altitude passage into wind over the right-hand side of the chosen area with flaps extended as needed and thoroughly inspect the landing area.
- 4. Perform circuit pattern.
- 5. Perform approach at increased idling with flaps fully extended.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

- 6. Reduce power to idle when flying over the runway threshold and touch-down at the very beginning of the chosen area.
- 7. After stopping the airplane switch off all switches, shut off the fuel selector, lock the airplane and seek for assistance.

NOTE

Watch the chosen area steadily during precautionary landing.

3.6.3 Landing with a flat tire

- 1. During landing keep the damaged wheel above ground as long as possible using the ailerons control
- Maintain the direction on the landing roll out, applying rudder control.

3.6.4 Landing with a defective landing gear.

- If the main landing gear is damaged, perform touch-down at the lowest practicable speed and if possible, maintain direction during landing run.
- If the nose wheel is damaged perform touch-down at the lowest practicable speed and hold the nose wheel above the ground by means of the elevator control as long as possible.

Date of Issue: 01/2016 Revision: -

3.7 Recovery from Unintentional Spin

WARNING

Intentional spins are prohibited!

There is no an uncontrollable tendency of the airplane to enter into a spin provided the normal piloting techniques are used.

Unintentional spin recovery technique:

1. Throttle - id

Lateral control - ailerons neutralized
 Rudder pedals - full opposite rudder

4. Rudder pedals - neutralize rudder immediately when

rotation stops

5. Longitudinal control - neutralize or push forward

and recover dive.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

3.8 Other Emergencies

3.8.1 Vibration

If any forced aircraft vibrations appear, it is necessary:

- To set engine speed to such power rating where the vibrations are lowest.
- 2. To land on the nearest airfield or to perform a precautionary landing according to 3.6

3.8.2 Carburetor icing

The carburetor icing shows itself through a decrease in engine power and an increase of engine temperatures.

To recover the engine power, the following procedure is recommended:

- Speed 130 km/h (70 KIAS)
 Throttle set to 1/3 of power
- 3. If possible, leave the icing area
- Increase the engine power gradually up to cruise conditions after 1-2 minutes

If you fail to recover the engine power, land on the nearest airfield (if possible) or depending on the circumstances, perform a precautionary landing according to 3.6

NOTE

If your engine is equipped with carburetor heating, use it for extended period descent and in area of possible carburetor icing.

Remember: Aircraft is approved to operate in VMC condition only!

3.8.3 Autopilot malfunction

In the case, that autopilot (if installed) starts to not work properly, press immediately red button "AP OFF" on the instrument panel.

WARNING

Take-Off, climb, Approach and landing with AP "ON" or with malfunction AP are PROHIBITED.

Date of Issue: 09/2017 Revision: 1

INTENTIONALLY LEFT BLANK

Date of Issue: 01/2016

Document No.: LSA-AOI-2-1-0-CL 3-10

Revision: -

Aircraft Operating Instructions

SECTION 4

4	NORMAL	PROCEDURES
---	--------	-------------------

- 4.2 Assembly and Disassembly
- 4.3 Pre-flight Inspection
- 4.4 Normal procedures
- 4.4.1 Before engine starting
- 4.4.2 Engine starting
- 4.4.3 Engine warm up, Engine check
- 4.4.4 Taxiing
- 4.4.5 Before take-off
- 4.4.6 Take-off
- 4.4.7 Climb
- **4.4.8** Cruise
- 4.4.9 Descent
- 4.4.10 Before landing
- 4.4.11 Balked Landing (Go around)
- 4.4.12 Landing
- 4.4.13 After landing
- 4.4.14 Engine shutdown
- 4.4.15 Aircraft parking and tie-down
- 4.4.16 Flight in rain

Date of Issue: 01/2016

Aircraft Operating Instructions

4.1 Introduction

Section 4 provides checklists and recommended procedures for normal operation of the aircraft.

4.2 Assembly and Disassembly

Refer to the BRISTELL S-LSA Maintenance and inspection procedures manual.

4.3 Pre-flight Inspection

Carry out the pre-flight inspection every day prior to the first flight or after airplane assembly. Incomplete or careless inspection can cause an accident. Carry out the inspection following the instructions in the Inspection Check List.

NOTE

The word "condition" in the instructions means a visual inspection of surface for damage deformations, scratching, chafing, corrosion or other damages, which may lead to flight safety degradation.

Date of Issue: 01/2016 Revision: -

The manufacturer recommends carrying out the pre-flight inspection as follows:

Date of Issue: 01/2016

Document No.: LSA-AOI-2-1-0-CL 4-3

Revision: -

Aircraft Operating Instructions

Inspection Check List

1	Ignition	- OFF
	 Master switch 	- ON
	 Fuel gauge ind. 	 check fuel quantity
	 Master switch 	- OFF
	Avionics	- check condition
	 Control system 	 visual inspection, function, clearance,
		free movement up to stops
		 check wing flaps operation
	Canopy	 condition of attachment, cleanness
	 Check cockpit for loose 	objects
2	 Engine cowling condition 	
	 Propeller and spinner c 	ondition
	 Engine mount and exha 	aust manifold condition
	 Oil and coolant quantity 	
		fuel and electrical system
	 Fuel system draining 	
	 Other actions according 	to the engine manual
3	 Wing surface condition 	
	 Leading edge condition 	
	 Pitot tube condition 	
4	Wing tip	 surface condition, attachment
	Aileron	 surface condition, attachment,
		clearance,
		free movement
	- Flap	- surface condition, attachment,
		clearance
(5)	 Landing gear 	- wheel attachment, brakes,
	1 100	condition and pressure of tires
		fuselage bottom surface condition
6	 Vertical tail unit 	- condition of surface, attachment, free
	Harizantal tail usit	movement, rudder stops
	Horizontal tail unit	- condition of surface, attachment, free
	The shock on left side s	movement, elevator stops
	side	of the fuselage and wing is the same as on right
1	SIUC	

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

WARNING

Visually check fuel level in each fuel tank before each take-off to be sure that you have sufficient fuel for the planned flight.

CAUTION

In case of long-term parking it is recommended to turn the engine several times (Ignition OFF!) by turning the propeller. Always handle the blade area by the palm i.e. do not grasp only the blade edge. It will facilitate engine starting.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

4.4 Normal procedures

4.4.1 Before engine starting

1. Control system - free & correct movement

2. Canopy - clean

Brakes - fully applied

4. Safety harness - tighten

5. Rudder pedal position - set

WARNING

Adjusting of rudder pedals position during flight is PROHIBITED.

4.4.2 Engine starting

1. Start the engine according to its manual procedure

Master switch - ON

3. Fuel Selector - ON - LEFT FUEL TANK !!!4. Electric fuel pump - ON - only for cold engine

5. Choke (cold engine) - pull to open and gradually release after

engine start

6. Starter - hold activated to start the engine

7. Electric fuel pump - ON – only for hot engine after it starts.

CAUTION

The starter should be activated for a maximum of 10 sec., followed by 2 min. pause for engine cooling.

As soon as engine runs, adjust throttle to achieve smooth running at approx. 2000 rpm. Check the oil pressure, which should increase within 10 sec. Increase the engine speed after the oil pressure has reached 29 psi and is steady.

To avoid shock loading, start the engine with the throttle lever set for idling or 10% open at maximum, then wait 3 sec to reach constant engine speed before new acceleration.

Only one ignition should be switched on (off) during ignition circuit check.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

4.4.3 Engine warm up, Engine check

4.4.3.1 Engine warm up

Prior to engine check block the main wheels using chocks. Initially warm up the engine to 2000 rpm for approx. 2 minutes, then continue to 2500 rpm till oil temperature reaches 50° (122°F). The warm up period depends on ambient air temperature.

Switch "ON" propeller control and check propeller adjustment in all adjustment range.

Check both ignition circuits at 4000 rpm for Rotax 912 ULS. The engine speed drop during the time either magneto switched off should not over 300 rpm. The Max. engine speed drop difference between circuits A and B should be 115 rpm.

NOTE

Only one ignition should be switched on (off) during ignition circuit check.

Set max. power for verification of max. speed with given propeller and engine parameters (temperatures and pressures).

Check acceleration from idling to max. power. If necessary, cool the engine at 3000 rpm before shutdown.

CAUTION

The engine check should be performed with the aircraft heading upwind and not on a loose terrain (the propeller may suck grit which can damage the leading edges of blades).

4.4.4 Taxiing

Apply power and brakes as needed. Apply brakes to control movement on ground. Taxi carefully when wind velocity exceeds 20 knots (10 m/s). Hold the control stick in neutral position, or in a position that properly deflects a crosswind

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

4.4.5 Before take-off

1. Altimeter - set

Trim - set neutral position
 Control system - check free movement

4. Cockpit canopy5. Safety harnessclosedtighten

6. Fuel Selector - ON (LEFT or RIGHT tank)

7. Ignition A,B - ON8. Electric fuel pump(s) - ON

9. Wing flaps - extend as needed

10. Autopilot (if installed) - OFF

4.4.6 Take-off

Brakes - apply to stop wheel rotation

Take-off power - throttle fully forward

3. Engine speed - check rpm

4. Instruments - check within limits
5. Nose wheel unstick - 55 km/h (30 KIAS)
6. Airplane lift-off - 75 km/h (40 KIAS)

7. Wing flaps - retract when speed of 120 km/h (65 KIAS)

is reached, at altitude of 150 ft

8. Make transition to climb

WARNING

The Take-off is prohibited if:

The engine is running unsteadily

The engine instruments values are beyond operational limits

• The crosswind velocity exceeds permitted limits (see 5.2.8)

Autopilot (if installed)is "ON"

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

4.4.7 Climb

1. Best ROC speed - 130 km/h (70 KIAS)

2. Throttle - Max. take-off power

(max. 5800 rpm for 5 minutes)
- Max. cont.power 5500 rpm

tuine the circles o

3. Trim - trim the airplane

3.1 Instruments - oil temperature and pressure,

cylinder head/coolant temperature within

limits

CAUTION

If coolant or oil temperature approach their limits, reduce the climb angle to increase airspeed and thus fulfill the limits.

4.4.8 Cruise

Electric fuel pump(s) - OFF

Refer to Section 5, for recommended cruising regimes.

4.4.9 Descent

1. Optimum glide speed - 120 km/h (65 KIAS)

CAUTION

It is not advisable to reduce the engine throttle control lever to minimum on final approach and when descending from very high altitude. In such cases the engine becomes under-cooled and a loss of power may occur. Descent at increased idle (approx. 3000 rpm), speed between 120-130 km/h IAS (65-70 KIAS) and check that the engine instruments indicate values within permitted limits.

4.4.10 Before landing

1. Approach speed - 120 km/h (65 KIAS)

2. Throttle - as needed

3. Electric fuel pump(s) - ON

Wing flaps - extend as needed

5. Trim - as needed

6. Autopilot (if installed) - OFF

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

4.4.11 Balked Landing (Go around)

1. Throttle - full power (max.5800 rpm)

Wing flaps - extend as needed
 Trim - adjust as needed

4. Wing flaps - retract at height of 150 ft after reaching

120 km/h (65 KIAS)

5. Trim - adjust6. Repeat circuit pattern and landing

4.4.12 Landing

1. Touch-down on main wheels

2. Apply brakes as needed after the nose wheel touch-down

4.4.13 After landing

Engine speed - set as required for taxiing

2. Wing flaps - retract

4.4.14 Engine shutdown

1. Engine speed - idle

2. Instruments - engine instruments within limits

3. Avionics - switch off
4. El. fuel pumps - switch off
5. Circuit breakers - switch off
6. Master switch - switch off

CAUTION

Rapid engine cooling should be avoided during operation. This happens above all during aircraft descent, taxiing, low engine rpm or at engine shutdown immediately after landing.

Under normal conditions the engine temperatures stabilize during descent, taxiing and at values suitable to stop engine by switching the ignition off. If necessary, cool the engine at 2500 - 2750 rpm to stabilize the temperatures prior to engine shut down.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

4.4.15 Aircraft parking and tie-down

Ignition check - OFF
 Master switch check - OFF
 Fuel selector - OFF

4. Parking brake - use it as necessary (if installed)

Canopy - close, lock as necessary

6. Secure the airplane

NOTE

It is recommended to use parking brake (if installed) for short-time parking only, between flights during a flight day. After ending the flight day or at low temperatures of ambient air, do not use parking brake, but use the wheel chocks instead.

NOTE

Use anchor eyes on the wings and fuselage rear section to fix the airplane. Move control stick forward and fix it together with the rudder pedals. Make sure that the cockpit canopy is properly closed and locked. The anchoring before leaving the airplane is important if the airplane is not equipped with a parking brake.

4.4.16 Flight in rain

When flying in the rain, no additional steps are required. Aircraft qualities and performance are not substantially changed. However Visual Meteorological Condition (VMC) must be maintained.

Date of Issue: 01/2016 Revision: -

INTENTIONALLY LEFT BLANK

Date of Issue: 01/2016

Document No.: LSA-AOI-2-1-0-CL 4-12

Revision: -

5

Aircraft Operating Instructions

SECTION 5

•	I LIN ONIMANOL
5.1	Introduction
5.2	Performance
5.2.1	Airspeed indicator system calibration
5.2.2	Stall speeds
5.2.3	Take-off performance
5.2.4	Landing distances
5.2.5	Climb performance
5.2.6	Cruise
5.2.7	Endurance and Range
5.2.8	Demonstrated crosswind performance
5.2.9	Optimum glide speed
5.2.10	Ceiling

PERFORMANCE

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

5.1 Introduction

Section 5 provides data for airspeed calibration, stall speeds, take-off performance and additional information.

The presented data has been computed from actual flight tests with the aircraft and engine in good conditions and using average piloting techniques.

If not stated otherwise, the performance stated in this section is valid for maximum take-off weight and under ISA conditions.

The performance shown in this section is valid for aircraft fitted with given engine and propeller.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

5.2 Performance

5.2.1 Airspeed indicator system calibration

	IAS	CAS		KIAS	KCAS
	(km/h)	(km/h)			
VS0	62	63	VS0	33	34
	70	71		38	39
VS1	80	81		40	41
	82	83	VS1	43	44
	90	91		50	51
	100	101		55	55
	110	111		60	60
	120	120		65	65
	130	130		70	70
VFE	139	139	VFE	75	75
	150	150		80	80
	160	160		85	85
	170	170		90	90
VA	180	179	VA	96	96
	190	189		100	100
	200	199		105	105
	210	209		110	109
	220	219		115	114
	230	229		120	119
VN0	240	238		125	124
4140	250	248	VN0	129	128
	260	258		135	134
	270	268		140	139
				145	144
\/NIE	280	278	\	150	149
VNE	290	287	VNE	157	156

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

5.2.2 Stall speeds

Conditions:	Wing	IAS	CAS	KIAS	KCAS	Altitude loss
Max.takeoff-off weight	flaps pos.	[km/h]	[km/h]			at recovery
Engine idle run						[ft]
	0°	80	81	43	44	100
Wing level stall	20°	75	76	40	41	120
	30°	62	63	33	34	160
Co-ordinated	0°	86	87	46	47	120
turn	20°	81	82	43	44	160
30° bank	30°	67	68	35	36	200

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

5.2.3 Take-off performance

ISA Co	nditions		COI	NCRETE	GRASS		
Airport altitude	Temperature tH [°C]	ISA pressure	Relative density	Takeoff Run [m]	Distance over 50 ft obstacle [m]	Takeoff Run [m]	Distance over 50 ft obstacle [m]
H [ft]		pH [Pa]	Δ[-]				
0 ft ISA	15,0	101324,7	1,0000	200	460	280	540
2000 ft ISA	11,0	94209,8	0,9428	230	520	320	610
4000 ft ISA	7,1	87505,0	0,8880	250	580	360	680
6000 ft ISA	3,1	81191,9	0,8358	290	660	400	770
8000 ft ISA	-0,8	75252,8	0,7859	320	740	450	870
10000 ft ISA	-4,8	69670,4	0,7384	370	840	510	990

ISA +	10 °C			COI	NCRETE	GRASS	
Airport altitude H [ft]	Temperature tH [°C]	ISA pressure pH [Pa]	Relative density \$\Delta\$ [-]	Takeoff Run [m]	Distance over 50 ft obstacle [m]	Takeoff Run [m]	Distance over 50 ft obstacle [m]
0 ft ISA	25,0	101324,7	0,9664	210	490	300	580
2000 ft ISA	21,0	94209,8	0,9107	240	550	340	650
4000 ft ISA	17,1	87505,0	0,8574	270	630	380	730
6000 ft ISA	13,1	81191,9	0,8066	310	710	430	830
8000 ft ISA	9,2	75252,8	0,7581	350	800	490	940
10000 ft ISA	5,2	69670,4	0,7118	390	910	550	1070

ISA +	20 °C		100	NCRETE	GRASS		
Airport altitude H [ft]	Temperature tH [°C]	ISA pressure pH [Pa]	Relative density \$\Delta\$ [-]	Takeoff Run [m]	Distance over 50 ft obstacle [m]	Takeoff Run [m]	Distance over 50 ft obstacle [m]
0 ft ISA	35,0	101324,7	0,9351	230	530	320	620
2000 ft ISA	31,0	94209,8	0,8807	260	590	360	700
4000 ft ISA	27,1	87505,0	0,8289	290	670	410	790
6000 ft ISA	23,1	81191,9	0,7794	330	760	460	890
8000 ft ISA	19,2	75252,8	0,7321	370	860	520	1010
10000 ft ISA	15,2	69670,4	0,6871	420	970	590	1140

ISA	-10 °C			COI	NCRETE	GRASS	
Airport altitude H [ft]	Temperature tH [°C]	ISA pressure pH [Pa]	Relative density \$\Delta\$ [-]	Takeoff Run [m]	Distance over 50 ft obstacle [m]	Takeoff Run [m]	Distance over 50 ft obstacle [m]
0 ft ISA	5,0	101324,7	1,0360	190	430	260	500
2000 ft ISA	1,0	94209,8	0,9772	210	480	290	570
4000 ft ISA	-2,9	87505,0	0,9209	240	540	330	640
6000 ft ISA	-6,9	81191,9	0,8672	270	610	370	720
8000 ft ISA	-10,8	75252,8	0,8159	300	690	420	810
10000 ft ISA	-14,8	69670,4	0,7670	340	780	480	920

ISA	-20 °C			COI	NCRETE	GRASS	
Airport altitude	Temperature tH [°C]	ISA pressure	Relative	Takeoff Run [m]	Distance over 50 ft obstacle [m]	Takeoff Run [m]	Distance over 50 ft obstacle [m]
H [ft] 0 ft ISA	-5,0	pH [Pa] 101324,7	Δ [-] 1,0746	170	400	240	470
2000 ft ISA	-9,0	94209,8	1,0142	190	450	270	530
4000 ft ISA	-12,9	87505,0	0,9563	220	500	310	590
6000 ft ISA	-16,9	81191,9	0,9011	250	570	340	670
8000 ft ISA	-20,8	75252,8	0,8483	280	640	390	750
10000 ft ISA	-24,8	69670,4	0,7979	310	720	440	850

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

5.2.4 Landing distances

ISA Co	nditions			COI	NCRETE	GRASS	
Airport altitude H [ft]	Temperature tH [°C]	ISA pressure pH [Pa]	Relative density \$\Delta\$ [-]		Distance over 50 ft obstacle [m]	Landing Run [m]	Distance over 50 ft obstacle [m]
0 ft ISA	15.0	101324.7	1.0000	90	290	110	310
2000 ft ISA	11,0	94209,8	0,9428	100	310	120	330
4000 ft ISA	7,1	87505,0	0,8880	100	330	120	350
6000 ft ISA	3,1	81191,9	0,8358	110	350	130	370
8000 ft ISA	-0,8	75252,8	0,7859	110	370	140	390
10000 ft ISA	-4,8	69670,4	0,7384	120	390	150	420

ISA + 1	0 °C			COI	NCRETE	GRASS	
Airport altitude H [ft]	Temperature tH [°C]	ISA pressure pH [Pa]		Landing Run [m]	Distance over 50 ft obstacle [m]	Landing Run [m]	Distance over 50 ft obstacle [m]
0 ft ISA	25,0	101324,7	0,9664	90	300	110	320
2000 ft ISA	21,0	94209,8	0,9107	100	320	120	340
4000 ft ISA	17,1	87505,0	0,8574	100	340	130	360
6000 ft ISA	13,1	81191,9	0,8066	110	360	140	380
8000 ft ISA	9,2	75252,8	0,7581	120	380	150	410
10000 ft ISA	5,2	69670,4	0,7118	130	410	150	440

ISA +	ISA + 20 °C				CONCRETE		RASS
Airport altitude H [ft]	Temperature tH [°C]	ISA pressure pH [Pa]	Relative density \$\Delta\$ [-]	Landing Run [m]	Distance over 50 ft obstacle [m]	Landing Run [m]	Distance over 50 ft obstacle [m]
0 ft ISA	35,0	101324,7	0,9351	100	310	120	330
2000 ft ISA	31,0	94209,8	0,8807	100	330	120	350
4000 ft ISA	27,1	87505,0	0,8289	110	350	130	370
6000 ft ISA	23,1	81191,9	0,7794	120	370	140	400
8000 ft ISA	19,2	75252,8	0,7321	120	400	150	420
10000 ft ISA	15,2	69670,4	0,6871	130	420	160	450

ISA	-10 °C		CONCRETE		GRASS		
Airport altitude H [ft]	Temperature tH [°C]	ISA pressure pH [Pa]	Relative density \$\Delta\$ [-]	Landing Run [m]	Distance over 50 ft obstacle [m]	Landing Run [m]	Distance over 50 ft obstacle [m]
0 ft ISA	5,0	101324,7	1,0360	90	280	110	300
2000 ft ISA	1,0	94209,8	0,9772	90	300	110	320
4000 ft ISA	-2,9	87505,0	0,9209	100	310	120	340
6000 ft ISA	-6,9	81191,9	0,8672	100	330	130	360
8000 ft ISA	-10,8	75252,8	0,8159	110	360	130	380
10000 ft ISA	-14,8	69670,4	0,7670	120	380	140	400

ISA	ISA -20 °C				CONCRETE		RASS
Airport altitude H [ft]	Temperature tH [°C]	ISA pressure pH [Pa]	Relative density \$\Delta\$ [-]	Landing Run [m]	Distance over 50 ft obstacle [m]	Landing Run [m]	Distance over 50 ft obstacle [m]
0 ft ISA	-5,0	101324,7	1,0746	80	270	100	290
2000 ft ISA	-9,0	94209,8	1,0142	90	290	110	310
4000 ft ISA	-12,9	87505,0	0,9563	90	300	120	320
6000 ft ISA	-16,9	81191,9	0,9011	100	320	120	340
8000 ft ISA	-20,8	75252,8	0,8483	110	340	130	370
10000 ft ISA	-24,8	69670,4	0,7979	110	360	140	390

Date of Issue: 09/2017 Revision: 1

5.2.5 Climb performance

	BEST RA	TE OF CL	IMB			BEST AN	IGLE OF	CLIMB		
MCP MTOW	IAS	IAS	KIAS	RATE OF CLIMB	RATE OF CLIMB	IAS	IAS	KIAS	RATE OF CLIMB	RATE OF CLIMB
ALTITUDE	[mph]	[km/h]	[knots]	[m/s]	[fpm]	[mph]	[km/h]	[knots]	[m/s]	[fpm]
0 ft ISA	83	133	72	4,7	910	67	108	58	4,2	820
2000 ft ISA	81	131	71	4,2	810	66	106	57	3,7	730
4000 ft ISA	80	129	70	3,6	710	65	104	56	3,2	630
6000 ft ISA	79	127	69	3,1	610	63	102	55	2,7	540
8000 ft ISA	78	125	67	2,6	510	62	100	54	2,3	450
10000 ft ISA	76	123	66	2,1	420	61	98	53	1,9	370

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

5.2.6 Cruise

		55%	65%	75%	MCP	T/O
		4300 rpm	4800 rpm	5000 rpm	5500 rpm	5800 rpm
	KIAS	87 knots	101 knots	106 knots	119 knots	127 knots
0 ft	KCAS	89 knots	102 knots	107 knots	120 knots	127 knots
	KTAS	89 knots	102 knots	107 knots	120 knots	127 knots
	KIAS	85 knots	99 knots	104 knots	117 knots	125 knots
2000 ft	KCAS	87 knots	100 knots	105 knots	118 knots	125 knots
	KTAS	89 knots	103 knots	108 knots	121 knots	129 knots
	KIAS	83 knots	97 knots	102 knots	115 knots	123 knots
4000 ft	KCAS	85 knots	98 knots	103 knots	116 knots	123 knots
	KTAS	90 knots	104 knots	109 knots	123 knots	131 knots
	KIAS	81 knots	95 knots	100 knots	113 knots	121 knots
6000 ft	KCAS	83 knots	96 knots	101 knots	114 knots	121 knots
	KTAS	90 knots	105 knots	111 knots	125 knots	133 knots
	KIAS	79 knots	93 knots	98 knots	111 knots	119 knots
8000 ft	KCAS	81 knots	94 knots	99 knots	112 knots	120 knots
	KTAS	91 knots	106 knots	112 knots	126 knots	135 knots
	KIAS	77 knots	91 knots	96 knots	109 knots	117 knots
10000 ft	KCAS	78 knots	92 knots	97 knots	110 knots	118 knots
	KTAS	91 knots	107 knots	113 knots	128 knots	137 knots

Date of Issue: 09/2017 Revision: 1

5.2.7 Endurance and Range

The table below shows fuel consumption, endurance and range

Fuel qty. = 120 I
Unusable fuel = 1 I

NO FUEL RESERVE CONSIDERED!

		55%	65%	75%	MCP	T/O
		4300 rpm	4800 rpm	5000 rpm	5500 rpm	5800 rpm
	KIAS	87 knots	101 knots	106 knots	119 knots	127 knots
	KCAS	89 knots	102 knots	107 knots	120 knots	127 knots
	KTAS	89 knots	102 knots	107 knots	120 knots	127 knots
0 ft	Fuel consumption	14,0 l/h	18,6 l/h	20,6 l/h	25,0 l/h	27,1 l/h
	Endurance	8:28	6:23	5:47	4:45	4:23
	Range	750 NM	650 NM	620 NM	570 NM	560 NM
		1390 km	1200 km	1150 km	1050 km	1030 km
	KIAS	88 knots	102 knots	107 knots	122 knots	130 knots
	KCAS	87 knots	100 knots	105 knots	118 knots	125 knots
	KTAS	89 knots	103 knots	108 knots	121 knots	129 knots
2000 ft	Fuel consumption	14,0 l/h	18,6 l/h	20,6 l/h	25,0 l/h	27,1 l/h
	Endurance	8:28	6:23	5:47	4:45	4:23
	Range	760 NM	660 NM	630 NM	580 NM	570 NM
		1400 km	1220 km	1160 km	1070 km	1050 km
	KIAS	85 knots	100 knots	105 knots	119 knots	128 knots
	KCAS	85 knots	98 knots	103 knots	116 knots	123 knots
	KTAS	90 knots	104 knots	109 knots	123 knots	131 knots
4000 ft	Fuel consumption	14,0 l/h	18,6 l/h	20,6 l/h	25,0 l/h	27,1 l/h
	Endurance	8:28	6:23	5:47	4:45	4:23
	Range	760 NM	660 NM	630 NM	580 NM	580 NM
		1410 km	1230 km	1170 km	1080 km	1070 km
	KIAS	83 knots	97 knots	103 knots	117 knots	126 knots
	KCAS	83 knots	96 knots	101 knots	114 knots	121 knots
	KTAS	90 knots	105 knots	111 knots	125 knots	133 knots
6000 ft	Fuel consumption	14,0 l/h	18,6 l/h	20,6 l/h	25,0 l/h	27,1 l/h
	Endurance	8:28	6:23	5:47	4:45	4:23
	Range	770 NM	670 NM	640 NM	590 NM	580 NM
		1420 km	1240 km	1190 km	1100 km	1080 km
	KIAS	81 knots	95 knots	101 knots	115 knots	124 knots
	KCAS	81 knots	94 knots	99 knots	112 knots	120 knots
	KTAS	91 knots	106 knots	112 knots	126 knots	135 knots
8000 ft	Fuel consumption	14,0 l/h	18,6 l/h	20,6 l/h	25,0 l/h	27,1 l/h
	Endurance	8:28	6:23	5:47	4:45	4:23
	Range	770 NM	680 NM	650 NM	600 NM	590 NM
		1430 km	1250 km	1200 km	1110 km	1100 km
	KIAS	79 knots	93 knots	99 knots	113 knots	121 knots
	KCAS	78 knots	92 knots	97 knots	110 knots	118 knots
	KTAS	91 knots	107 knots	113 knots	128 knots	137 knots
10000 ft	Fuel consumption	14,0 l/h	18,6 l/h	20,6 l/h	25,0 l/h	27,1 l/h
	Endurance	8:28	6:23	5:47	4:45	4:23
	Range	770 NM	680 NM	650 NM	610 NM	600 NM
		1430 km	1260 km	1210 km	1130 km	1110 km

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

5.2.8	Demonstrated crosswind performance			
	Max. permitted head wind velocity for take-off and landing20	m/s	40	knots
	Max. permitted cross wind velocity for take-off and landing			
	Average pilots8	m/s	15	knots
	Skilled pilots11	m/s	22	knots
5.2.9	Optimum glide speed			
	Optimum glide speed120	km/h	65	KIAS
5.2.10	Ceiling			
	Service ceiling4300	m	14.000	ft

Date of Issue: 09/2017 Revision: 1

SECTION 6

6	WEIGHT AND BALANCE
6.1	Introduction
6.2	Weight and Balance Record
6.2.1	Weight and Balance Report
6.2.1.1	Empty Aircraft Weight and CG

6.2.1.2 Loaded Aircraft Weight and CG6.2.1.3 Weight and CG Blank Form

6.3 Permitted payload range

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

6.1 Introduction

This section contains the payload range within which the BRISTELL S-LSA may be safely operated.

Procedures for weighing the aircraft and the calculation method for establishing the permitted payload range are contained in last revision of FAA Aviation Advisory Circular AC.43.13 – 1B

6.2 Weight and Balance Record

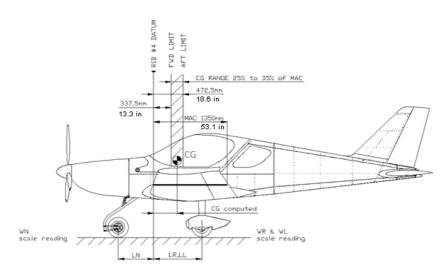
List of equipment installed in Bristell S-LSA, S/N 317/2018:

- 1. 12V/5V socket behind seats and on instrument panel
- 2. 2 map pockets
- 3. 3-pos.adjustable rudder pedals on both sides
- 4. 4-point safety belts
- 5. Airpath C2400 L4P Compass
- 6. Arm rest box
- 7. Aveo Silver Max air vents
- 8. AVEO wing strobes/nav lights
- 9. Back-up ALT Winter 4 FGH 40
- 10. Back-up ASI Winter 7FMS 513 (0-160 kts)
- 11. Baggage compartment behind seats
- 12. Dual brakes
- 13. ELT Kannad AF Integra 406 MHz
- 14. Fiti 3LR 158, 3-bladed, ground adjustable propeller
- 15. Garmin G3X flight display system
- 16. Garmin GA 26C GPS antenna for G3X
- 17. Garmin GAP 26 angle of attack unheated probe
- 18. Garmin GDU 460 dual
- 19. Garmin GEA 24 Engine Interface Module
- 20. Garmin GMA 240 digital audio panel
- 21. Garmin GMU 22 Magnetometer
- 22. Garmin GNC 255A NAV/COM
- 23. Garmin GSU 25 ADHRS (1x)
- 24. Garmin GTP 59 Temperature Probe

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

- 25. Garmin GTR 20 remote-mount comm radio
- 26. Garmin GTX 23 ES mode S transponder
- 27. Grey interior
- 28. Key switch box
- 29. Lambert+LINAK electric flaps actuator
- 30. Leather glareshield, Leather upholstery
- 31. Lockable canopy, Lockable fuel tank caps
- 32. Long HTU (2.9 m) with long trim and horn balance
- 33. MATCO 5,00-5 wheels
- 34. Middle size instrument panel for G3X
- 35. Paint scheme: #3
- 36. Parking brake
- 37. Pierburg auxiliary fuel pump
- 38. RAMI AV-10 comm antenna
- 39. RAMI AV-200 ELT antenna
- 40. RAMI AV-525 VOR, LOC & GS "V" Dipole Antenna
- 41. RAMI AV-74 transponder DME antenna
- 42. Ray Allen G205 grips
- 43. RC 200 control for ELT Kannad
- 44. Rear console with cut out for fuel selector
- 45. Rotax 912 ULS engine, clutch, airbox
- 46. Steerable nose wheel
- 47. TCW IBBS-12V-3AH backup battery for Garmin G3X
- 48. Tinted canopy dark grey
- 49. USB port(s) on the instrument panel
- 50. Variometer BC-6 ft/min
- 51. Wheel fairings (pants) for wheels 5,00"-5"
- 52. Whelen MB 1 tail mounted LED strobe
- 53. Wing landing lights


Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

6.2.1 Weight and Balance Report

6.2.1.1 Empty Aircraft Weight and CG

		WE= 353,8	CG (%MAC) = 31,4	MT= 150054,43
EMPTY	EMPTY AIRCRAFT	EMPTY WEIGHT (kg)	CG (mm) = 424,12	EMPTY ACFT TOTAL MOMENT (kg.mm)
1.7 =	NOSE WHEEL	WN= 71,2	LN= -750	MN= -53411,0
AIRCRAFT F AND CG	LEFT MAIN WHEEL	WL= 142,4	LL= 720	ML= 102549,2
١.	RIGHT MAIN WHEEL	WR= 140,2	LR= 720	MR= 100916,3
	ITEM	WEIGHT (kg)	ARM (mm)	MOMENT = WEIGHT x ARM (kg.mm)
				MAC (mm): 1350,0

 $CG(mm) = \frac{Total Moment}{Total Weight}$

 $CQ(MAC) = CQ(mm) \times \frac{100}{MAC}$

Serial No.: 317/218
Date: 14.12.2017
By: BRM Aero

Date of Issue: 01/2016 Revision: -

6.2.1.2 Loaded Aircraft Weight and CG

	ITEM	WEIGHT (kg)	ARM (mm)	MOMENT = WEIGHT x ARM (kg.mm)
	EMPTY AIRCRAFT	353,8	424,12	150054,4
	PILOT		600,0	
	PASSENGER		600,0	
AFT 63	BAGGAGE - BEHIND SEATS		1400,0	
AIRCR.	BAGGAGE - FRONT optional)		-300,0	
LOADED /	BAGGAGE - WING LOCKERS		630,0	
9 >	FUEL TANKS		200,0	
	LOADED AIRCRAFT	TAKEOFF WEIGHT (kg)	CENTER OF GRAVITY CG (mm)=	LOADED ACFT TOTAL MOMENT (kg.mm)
		TOW=	CG (%MAC) =	MT=

Max.Takeoff Weight:	600	kg	$CG(mm) = \frac{Total Moment}{Total Moment}$	Serial No.: 317/218
CG Range:	25	35	Total Weight	Date:
Forward limit:	337,5	mm	$CG(\%MAC) = CG(mm) \times \frac{10}{MA}$	By:
Rearward limit:	472,5	mm		

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

6.2.1.3 Weight and CG Blank Form

ITEM	WEIGHT (kg)	ARM (mm)	MOMENT = WEIGHT x ARM (kg.mm)		
RIGHT MAIN WHEEL	WR=	LR= 720,0	MR=		
LEFT MAIN WHEEL	WL=	LL= 720,0	ML=		
NOSE WHEEL	WN=	LN= -750,0	MN=		
EMPTY AIRCRAFT	EMPTY WEIGHT (kg)	CG (%MAC) =	EMPTY ACFT TOTAL MOMENT (kg.mm) MT=		
	LEFT MAIN WHEEL NOSE WHEEL	RIGHT MAIN WHEEL WR= LEFT MAIN WHEEL WL= NOSE WHEEL WN= EMPTY WEIGHT (kp)	RIGHT MAIN WHEEL WR= LR= 720,0 LEFT MAIN WHEEL WL= LL= 720,0 NOSE WHEEL WN= LN= -750,0 EMPTY AIRCRAFT CG (mm) =		

EMPTY AIRCRAFT PILOT PASSENGER	(kg)	(mm) 600,0	(kg.mm)
PILOT		600,0	
		600,0	
PASSENGER		Ī	
ASSERVEN		600,0	
BAGGAGE - BEHIND SEATS		1400,0	
SEATS BAGGAGE - FRONT optional) BAGGAGE - WING LOCKERS		-300,0	
BAGGAGE - WING LOCKERS		630,0	
FUEL TANKS		200,0	
LOADED AIRCRAFT	TAKEOFF WEIGHT (kg)	CENTER OF GRAVITY CG (mm)=	LOADED ACFT TOTAL MOMEN (kg.mm) MT=
	SEATS BAGGAGE - FRONT optional) BAGGAGE - WING LOCKERS FUEL TANKS	SEATS BAGGAGE - FRONT optional) BAGGAGE - WING LOCKERS FUEL TANKS TAKEOFF WEIGHT	1400,0

Max.Takeoff Weight:	600	kg	$CQ(mm) = \frac{Total Moment}{Total Weight}$	Serial No.: 317/218
CG Range:	25	35	$CQ(\text{MAC}) = CQ(\text{mm}) x \frac{100}{MAC}$	Date:
Forward limit:	337,5	mm	MAC	Ву:
Rearward limit:	472,5	mm	_	

Max.useful load:

WU (kg) = MTOW - WE

WU (kg) = 600
WU (kg) =

WARNING

DO NOT EXCEED MAXIMUM TAKEOFF WEIGHT 600 kg!

Date of Issue: 01/2016 Revision: -

6.3 Permitted payload range

		ILDIA	ILOAD	MINGE	OF BRIST	<u> </u>		
S/N:	317/2018			Empty	weight (kg):	354	MTOW (kg):	600,0
F								
U E	VOLUME	(litres)	20	40	60	80	100	120
Ĺ	WEIGHT	(kg)	14,5	29,0	43,5	58,0	72,5	87,0
				PERM	ITTED CR	EW WEI	GHT (kg)	
	NO BACCACE	0	165	196	203	188	174	159
	NO BAGGAGE		35,0 %MAC	35,0 %MAC	34,6 %MAC	33,9 %MAC	33,2 %MAC	32,5 %M
	1/2 REAR	8	111	142	173	181	166	152
			35,0 %MAC	35,0 %MAC	35,0 %MAC	34,6 %MAC	33,9 %MAC	33,2 %M
B A	MAX REAR 1/2 WING LOCKERS	15	56	87	118	149	159	144
			35,0 %MAC	35,0 %MAC	35,0 %MAC	35,0 %MAC	34,7 %MAC	33,9 %M
G		20	141	172	183	168	154	139
G	1/2 WING LOCKERS	20	35,0 %MAC	35,0 %MAC	34,7 %MAC	34,0 %MAC	33,3 %MAC	32,5 %M
Α	1/2 REAR + 1/2 WING	28	86	117	148	161	146	132
G			35,0 %MAC	35,0 %MAC	35,0 %MAC	34,7 %MAC	34,0 %MAC	33,3 %M
E	MAX REAR + 1/2 WING	35	Х	62	93	124	139	124
				35,0 %MAC	35,0 %MAC	35,0 %MAC	34,7 %MAC	34,0 %M
	MAX WING LOCKERS	40	116	147	163	148	134	119
	WIAX WING EOCKERS		35,0 %MAC	35,0 %MAC	34,8 %MAC	34,0 %MAC	33,3 %MAC	32,6 %M
	1/2 REAR + MAX WING	48	61	92	123	141	126	112
	I/ E NEAR T WAX WING		35,0 %MAC	35,0 %MAC	35,0 %MAC	34,8 %MAC	34,1 %MAC	33,4 %M
(kg)	MAX REAR + WING	55	Х	Х	69	100	119	104
(16/					35,0 %MAC	35,0 %MAC	34,8 %MAC	34,1 %M

Permitted crew weight with regard to CG limits.

"X" (if present) means computed crew weight less than minimum crew weight

Date of Issue: 01/2016 Revision: -

INTENTIONALLY LEFT BLANK

Date of Issue: 01/2016

Document No.: LSA-AOI-2-1-0-CL 6-8

Revision: -

Aircraft Operating Instructions

SECTION 7

7	AIRPLANE AND SYSTEMS DESCRIPTION
7.1	Introduction
7.2	Airframe
7.3	Control system
7.4	Landing gear
7.5	Seats and safety harness
7.6	Baggage compartment
7.7	Canopy
7.8	Power plant
7.8.1	Throttle
7.8.2	Heating
7.9	Fuel system
7.10	Electrical system
7.10.1	Battery
7.10.2	Master switch
7.10.3	Ignition Switch
7.11	Pitot and static pressure system
7.12	Miscellaneous equipment
7.13	Instruments and Avionics
7.14	Cockpit
7.14.1	Cockpit layout

Date of Issue: 01/2016 Revision: -

Document No.: LSA-AOI-2-1-0-CL 7-1

7.14.2 Instrument panel

Aircraft Operating Instructions

7.1 Introduction

This section provides description and operation of the aircraft and its systems.

7.2 Airframe

All-metal construction, single curvature metal skins riveted to stiffeners. Construction is of 6061-T6 aluminium sheet metal riveted to aluminium angles with Avex rivets. This high strength aluminium alloy construction provides long life and low maintenance costs thanks to its durability and corrosion resistance characteristics.

The wing has a high lift aerofoil equipped by fowler flaps controlled by the electric servo operated by the pilot.

7.3 Control system

The plane is equipped with a dual stick control and classic rudder pedals, with pedal hydraulic brakes for easy ground control.

The elevator and aileron trim control, as well as wing flaps are electrically operated from the rocker switches located on the instrument panel or on the control stick.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

7.4 Landing gear

Tricycle landing gear with the steerable nose wheel. Main landing gear uses two fiberglass spring elements.

7.5 Seats and safety harness

Side-by-side seating. Seat cushions are removable to make easier cleaning and drying. Four point safety belts provided to each seat. Optional, is additional seat upholstery to raise the small pilot or move him forward.

NOTE

Prior to each flight, ensure that the seat belts are firmly secured to the airframe, and that the belts are not damaged. Adjust the buckle so that it is centred on the body.

7.6 Baggage compartment

The rear baggage compartment is located behind the seats. It may accommodate up to 15 kg (33 lb). This space is divide on two sections – baggage compartment A and B. Is not recommended give too heavy things into baggage compartment B.

The baggage may also be loaded into the baggage compartment inside each wing (optional equipment) up to 20 kg (44 lb), in each wing locker.

Optionally also a front locker in a space between the instrument panel and firewall may be installed. Maximum baggage is 10 kg (22 lb).

Make sure that baggage does not exceed maximum allowable weight, and that the aircraft CG is within limits with loaded baggage.

All baggage must be properly secured.

7.7 Canopy

Access to the cabin is from both sides. Make sure that the canopy is latched and mechanism is securely locked into position on both sides before operating the aircraft.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

7.8 Power plant

Engine:

ROTAX 912 ULS S engine 98.6 hp is installed. Rotax 912 ULS is 4-stroke, 4 cylinder, horizontally opposed, spark ignition engine with one central camshaft-push-rod-OHV. Liquid cooled cylinder heads, ram air cooled cylinders.

Dry sump forced lubrication. Dual contactless capacitor discharge ignition. The engine is fitted with an electric starter, AC generator and mechanical fuel pump. Prop drive via reduction gear with integrated shock absorber.

Propeller:

 FITI ECO COMPETITION 3LR 158, on-grouns adjustable, 3bladed, composite propeller.

NOTE

For technical data refer to documentation supplied by the propeller manufacturer

7.8.1 Throttle

Engine power is controlled by means of the THROTTLE lever. THROTTLE lever is positioned in the middle channel between the seats. Lever is mechanically connected (by cables) to the flaps on the carburettors. Spring is added to the throttle push rod to ensure that the engine will go to full power if the linkages fail.

7.8.2 Heating

Heating consists of a heat exchanger on the exhaust manifold and control mechanism located on the right hand side of instrument panel.

CAUTION

Incidents involving exhaust gases entering the heating or ventilation system may result in fatal accidents due to carbon monoxide poisoning of the aircraft occupants. A carbon monoxide detector is recommended.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

7.9 Fuel system

Each tank is equipped with a vent outlet and screen filter.

Drain valve located in the lowest point of the each tank and on the bottom edge of the firewall, on the gascolator.

Main fuel selector valve is on the central console in the cockpit.

The electric fuel pump is located on firewall.

CAUTION

Do not overfill the tanks to avoid fuel overflow through venting tubes.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

7.10 Electrical system

7.10.1 Battery

The battery is mounted on the forward side of the firewall.

7.10.2 Master switch

Master switch connects the electrical system to the 12 Volt battery and charger/coils, controlled by the regulator. See Engine Manual for electrical system details.

NOTE

Ignition system is independent on the power source and will operate even with Master switch and/or breaker off.

7.10.3 Ignition Switch

Ignition must be on BOTH to operate the engine: For safety, remove key when engine is not running.

NOTE

All switches and or engine controls are "up" or "push forward" for operation, except the choke, cabin heat and carburetor pre-heat, which is "Pull" for "on". Optional equipment, switches and/or fuses are subject to change or installed as requested. See Aircraft Equipment List and Photo and Description of equipment and controls in the cockpit.

7.11 Pitot and static pressure system

Pitot tube (optionally heated) is located below the left wing. Pressure distribution to the instruments is through flexible plastic hoses.

Static ports are located on both sides of the fuselage at the tail.

Keep the pitot head clean to ensure proper function of the system.

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

7.12 Miscellaneous equipment

BRISTELL S-LSA S/N 317/2018 is fitted with:

- 1. 12V/5V socket behind seats and on instrument panel
- 2. 2 map pockets
- 3. 3-pos.adjustable rudder pedals on both sides
- 4. 4-point safety belts
- Arm rest box
- 6. Aveo Silver Max air vents
- 7. AVEO wing strobes/nav lights
- 8. Dual brakes, Parking brake
- 9. Grey interior
- 10. Key switch box
- 11. Lambert+LINAK electric flaps actuator
- 12. Leather glareshield, Leather upholstery
- 13. Lockable canopy, Lockable fuel tank caps
- 14. MATCO 5,00-5 wheels
- 15. Middle size instrument panel for G3X
- 16. Pierburg auxiliary fuel pump
- 17. RAMI AV-10 comm antenna
- 18. RAMI AV-200 ELT antenna
- 19. RAMI AV-525 VOR, LOC & GS "V" Dipole Antenna
- 20. RAMI AV-74 transponder DME antenna
- 21. Ray Allen G205 grips
- 22. Rear console with cut out for fuel selector
- 23. Steerable nose wheel
- 24. Tinted canopy dark grey
- 25. USB port(s) on the instrument panel
- 26. Wheel fairings (pants) for wheels 5,00"-5"
- 27. Whelen MB 1 tail mounted LED strobe
- 28. Wing landing lights

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

7.13 Instruments and Avionics

BRISTELL S-LSA S/N 317/2018 is fitted with:

- 1. Back-up ALT Winter 4 FGH 40
- 2. Back-up ASI Winter 7FMS 513 (0-160 kts)
- 3. Back-up variometer BC6 (+/- 2000 f)
- Airpath C2400 L4P Compass
- 5. Garmin G3X flight display system including:
- 6. Garmin GDU 460 dual displays
- 7. Garmin GEA 24 Engine Interface Module
- 8. Garmin GMA 240 digital audio panel
- 9. Garmin GMU 22 Magnetometer
- 10. Garmin GNC 255A NAV/COM
- 11. Garmin GSU 25 ADHRS (1x)
- 12. Garmin GTP 59 Temperature Probe
- 13. Garmin GA 26C GPS antenna for G3X
- 14. Garmin GAP 26 angle of attack unheated probe
- 15. TCW IBBS-12V-3AH backup battery for Garmin G3X
- 16. Garmin GTR 20 remote-mount comm radio
- 17. Garmin GTX 23 ES mode S transponder
- 18. ELT Kannad AF Integra 406 MHz + RC 200 control unit

NOTE

For operating instructions refer to the documentation supplied with the instruments.

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

7.14 Cockpit

7.14.1 Cockpit layout

Date of Issue: 09/2017

Document No.: LSA-AOI-2-1-0-CL

7-9

Revision: 1

Aircraft Operating Instructions

7.14.2 Instrument panel

Date of Issue: 09/2017 Revision: 1

SECTION 8

8	Airplane handling, servicing an	d
	maintenance	

- 8.1 Introduction
- 8.2 Aircraft inspection periods
- 8.3 Aircraft alterations or repairs
- 8.4 Ground handling
- 8.4.1 Towing
- 8.4.2 Parking
- 8.4.3 Mooring
- 8.4.4 Jacking
- 8.4.5 Road transport
- 8.5 Cleaning and care

Date of Issue: 01/2016

Aircraft Operating Instructions

8.1 Introduction

This section contains factory-recommended procedures for proper ground handling and servicing of the airplane. It also identifies certain inspection and maintenance requirements, which must be followed if the airplane is to retain that new-plane performance and dependability.

8.2 Aircraft inspection periods

Periods of overall checks and contingent maintenance depends on the condition of the operation and on overall condition of the airplane.

Inspections and revisions should be carried out in the following periods, at least:

- a) after the first 25 flight hours
- b) after the first 50 flight hours
- c) after every 100 flight hours or at least annual inspection

For BRISTELL S-LSA aircraft maintenance refer to the Maintenance and Inspection Procedures, Section 2.

For Rotax 912 ULS engine maintenance refer to the Maintenance Manual (Line Maintenance) for Rotax Engine Type 912 Series.

For Fiti Eco Competition 3LR 158 propeller maintenance refer to the Operating Instructions and Technical Description, and also to the Fiti Letter of Authorization, dated May 10th, 2016, as well as to the Description of mandatory regular service operations to be carried out for BRM Aero after the first 50 and 100 hours, and thereafter at one-year intervals

All repairs and maintenance should be made in accordance with AC 43.13-1B.

8.3 Aircraft alterations or repairs

It is recommended to contact the airplane manufacturer prior to any alternations to the aircraft to ensure that the airworthiness of the aircraft is not violated. Always use only the original spare parts produced by the airplane (engine, prop) manufacturer.

If the aircraft weight is affected by that alternation, a new weighing is necessary, then record the new empty weight into the Weight and Balance record / Permitted payload range in SECTION 6 and up-date the placard showing weights in the cockpit.

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

8.4 Ground handling

8.4.1 Towing

To handle the airplane on the ground, use the Tow Bar, or the fuselage rear pushed down in the place of a bulkhead.

CAUTION

Avoid excessive pressure at the airplane airframe-especially at control surfaces. Keep all safety precautions, especially in the propeller area.

8.4.2 Parking

It is advisable to park the airplane inside a hangar or alternatively inside any other suitable space (garage) with stable temperature, good ventilation, low humidity and dust-free environment.

It is necessary to moor the airplane when it is parked outside a hangar. Also when parking for a long time, cover the cockpit canopy, possibly the whole airplane by means of a suitable tarpaulin.

8.4.3 Mooring

The airplane should be moored when parked outside a hangar after the flight day. The mooring is necessary to protect the airplane against possible damage caused by wind and gusts.

For this reason the aircraft is equipped with mooring eyes located on the lower surfaces of the wings.

Mooring procedure:

- Check: Fuel Selector shut off, Circuit breakers and Master switch switched off, Switch box switched off.
- 2. Fix the hand control using e.g. safety harness
- 3. Close air vent
- 4. Close and lock canopy
- Moor the aircraft to the ground by means of a mooring rope passed through the mooring eyes located on the lower surfaces of the wings and below rear fuselage

NOTE

In the case of long term parking, especially during winter, it is recommended to cover the cockpit canopy or possibly the whole aircraft by means of a suitable tarpaulin attached to the airframe.

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

8.4.4 Jacking

Since the empty weight of this aircraft is relatively low, two people can lift the aircraft easily.

First of all prepare two suitable supports to support the aircraft.

It is possible to lift the aircraft by handling the following parts:

- By pushing the fuselage rear section down in the place of a bulkhead the fuselage front section may be raised and then supported under the firewall.
- By holding the fuselage rear section under a bulkhead the fuselage rear may be raised and then supported under that bulkhead.
- To lift up a wing, push from underneath that wing only at the main spar area. Do not lift up a wing by handling the wing tip.

8.4.5 Road transport

The aircraft may be transported after loading on a suitable car trailer. It is necessary to dismantle the wings before road transport. The aircraft and dismantled wings should be attached securely to protect these parts against possible damage.

8.5 Cleaning and care

Use efficient cleaning detergents to clean the aircraft surface. Oil spots on the aircraft surface (except the canopy!) may be cleaned with gasoline.

The canopy may only be cleaned by washing it with a sufficient quantity of lukewarm water and an adequate quantity of detergents. Use either a soft, clean cloth sponge or deerskin. Then use suitable polishers to clean the canopy.

CAUTION

Never clean the canopy under "dry" conditions and <u>never</u> use gas or chemical solvents!

Upholstery and covers may be removed from the cockpit, brushed and eventually washed in lukewarm water with an adequate quantity of detergents. Dry the upholstery thoroughly before insertion into the cockpit.

CAUTION

In the case of long term parking, cover the canopy to protect the cockpit interior from direct sunshine.

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions SECTION 9

- 9 REQUIRED PLACARDS AND MARKINGS
- 9.1 Limitation placards
- 9.2 Miscellaneous placards and markings

Date of Issue: 01/2016 Revision: -

Aircraft Operating Instructions

9.1 Limitation placards

The airplane must be placarded with:

- All fuses
- Ignition switches
- Choke
- Starter
- Trim: Nose heavy and Tail heavy
- Flaps: 0°, 10°, 20°, 30°
- Maximum rear baggage weight 15 kg (33 lb)
- Maximum weight in each wing locker 20 kg (44 lb), if installed
- Maximum weight in front locker 10 kg (22 lb), if installed
- Instruments
- Canopy opening/closing instructions
- Fuel capacity: 15.87 U.S. gallons / min. 95 Octane at filler neck
- Fireproof Identification plate attached to the fuselage left side, in front of the horizontal tail unit

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

	December worning for LCA actagony
PASSENGER WARNING! THIS AIRCRAFT WAS MANUFACTURED IN ACCORDANCE	Passenger warning for LSA category aeroplanes.
WITH LIGHT SPORT AIRCRAFT AIRWORTHINESS	Located on the instrument panel.
STANDARDS AND DOES NOT CONFORM TO STANDARD CATEGORY AIRWORTHINESS REQUIREMENTS.	Located on the monament parion.
PASSENGER NOTICE	Passenger notice for LSA category
THIS AIRCRAFT CONFORMS TO ASTM CONSENSUS STANDARDS OF AIRWORTHINESS DEVELOPED AND	aeroplanes.
MAINTAINED BY THE AVIATION COMMUNITY UNDER ASTM TECHNICAL COMMITTEE F37.	Located on the instrument panel.
ALL AEROBATIC MANEUVERS,	Operation limitation.
INCLUDING SPINS ARE PROHIBITED	Located on the instrument panel.
WARNING	Operation limitation.
IFR FLIGHTS AND INTENTIONAL FLIGHTS UNDER	Located on the instrument panel.
ICING CONDITIONS ARE PROHIBITED!	
BAGGAGE COMPARTMENT - A	Main baggage compartment behind the seats.
BAGGAGE COMPARTMENT - B	Additional baggage compartment
	behind the Baggage compartment A.
	NOT TO BE USED FOR HEAVY ITEMS!
MAX. 33 LB	Maximum weight of baggage in the
WAA. 33 LB	Baggage compartment – A, behind
	the seats.
MAX. 44 LB	Maximum weight of baggage in each
	wing locker, if installed.
MAX. 22 LB	Maximum weight of baggage in
LINUISABLE FUEL OLIANTITY 0 43-19 CAL	fuselage front locker, if installed. Unusable quantity of fuel in each tank
UNUSABLE FUEL QUANTITY 0.13 US GAL	' '
V _{FE} 75 kt	Airspeed limitations.
V _Δ 96 kt	Located on the instrument panel or
V _{NE} 157 kt	fuselage side.
	Franks and distributions
ENGINE RPM:	Engine speed limitations.
Max. take-off (max. 5 min.) 5800 rpm	Located on the instrument panel or fuselage side.
Max. continuous 5500 rpm	racolago sido.
Idle 1400 rpm	

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

WARNING DO NOT EXCEED MAXIMUM TAKE-OFF WEIGHT 1320 LBS Maximum Takeoff Weight Limitation. 1320 lb limit for Light sport aeroplanes.

Located on the instrument panel or fuselage side.

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

9.2 Miscellaneous placards and markings

NO STEP!	Wing flap root area
NO PUSH	Areas to avoid pushing on them. Wing trailing edge, control surfaces trailing edges, etc.
OCTANA: 05 TVS CENTRACITY 16 11:5:	Located on wing upper skin around the fuel tank filler neck.
MAX HIGOHHIM MAX	Throttle and Choke placard located on the Throttle-choke quadrant.
PEDAL SETTING/ PEDAL SETTING	Located on the fuselage right/left side under the instrument panel. Placard point to the lever to adjust pedals position.
COPILOT HEADSET PILOT HEADSET	Located between the seat backs, at the headphone sockets.
PUSH TO OPEN	Located on the fuselage left side at the button to release canopy locks.
PUSH HERE TO CLOSE	Located inside the cockpit on the left and right side of the tip-up canopy frame.

Date of Issue: 09/2017 Revision: 1

CANOPY OPENING: PULL LEVER BETWEEN SEATS AND SIMULTANEOUSLY PUSH CANOPY UP	Located on the top of the canopy inside.
CANOPY OPEN LEVER HOLD LEVER PULLED AND PUSH CANOPY UP	Located on the lever between seats.
This aircraft is equipped with a ballistically-deployed emergency parachute system	If BRS rescue system is installed: Placard located on the both sides of fuselage between canopy and rear window
Rocket Deployed Parachute Egress Area STAY CLEAR Emergency Information at www.BRSparachuse.com or call (2019/25/81 arthe brooks a Vestanda cell (2019/25/81 to	Placard located in place rocket egress
SENTIC COM	Located on both sides of the fuselage tail where are located static ports.

CAUTION

The owner (operator) of this airplane is responsible for the readability of placards during the aircraft service life.

Date of Issue: 09/2017 Revision: 1

Aircraft Operating Instructions

SECTION 10

- 10 SUPPLEMENTS
- 10.1 Introduction
- 10.2 List of inserted supplements
- 10.3 Inserted Supplements

Date of Issue: 01/2016

Document No.: LSA-AOI-2-1-0-CL 10-1

Revision: -

Aircraft Operating Instructions

10.1 Introduction

This section contains the appropriate supplements necessary to safely and efficiently operate the aircraft when equipped with various optional systems and equipment not provided with the standard airplane.

Date of Issue: 01/2016 Revision: -

10.2 List of inserted supplements

Date	Suppl. No.	Title of inserted supplement
07/2011	01/2011	Aircraft Flight Training Supplement
12/2017	02	Description of the aircraft S/N 317/2018

Date of Issue: 01/2016 Revision: -

10.3 Inserted Supplements

Date of Issue: 01/2016 Revision: -

SUPPLEMENT No. 01/2011

Aircraft Flight Training Supplement

The BRISTELL LSA flying characteristics and behavior are similar to single engine aircraft.

Following training procedure is applicable if the pilot is holder of UL, PPL or LSA Pilot License. The training flight hours are recommended minimum and depends on the Flight Instructor if student pilot is ready to continue on in next training step. Training can be performed by Flight Instructor or by the experienced pilot who has minimum 20 hours on the BRISTELL LSA.

Type Rating Training Procedure:

Ground Training - before practical Flight Training the pilot has to get familiar with following procedures and documentation

- Aircraft Operating Instructions (AOI)
- Aircraft Maintenance and Inspection Procedures
- Aircraft preflight inspection procedure
- Control Checklists
- Radio, avionics, aircraft and engine controls procedures
- Differences in control and aircraft handling
- Emergency procedures

Date of Issue: 07/2011 Revision: 1.0

Flight training program - recommended

Flight Training Procedure		Dual		Solo	
			hr/min	Flights	hr/min
1.	Check flight	1	30'		
2.	Pattern training flights up to 1000 ft AGL	4	20'	3	15'
3.	Pattern training flights up to 500 ft AGL	4	20'	3	15'
4.	Stall speed, 45°turns, side slips	1	30'	1	20'
5.	Emergency landing training	4	20'	3	10'
Total		14	2 hr	10	1 hr

Date of Issue: 07/2011 Revision: 1.0

Flight Training Procedure - description

- 1. Check flight Student Pilot will fly the airplane in local flight, instructor is giving advice as necessary.
- 2. Pattern training flights up to 1000 feet AGL high pattern procedures, instructor is giving advice as necessary.
- **3. Pattern training flights up to 500 feet AGL** high pattern procedures, instructor is giving advice as necessary.
- **4.** Stall speed, **45**°turns, sideslips stall speed flaps retracted and extended (landing configuration), sideslips at landing configuration.
- **5. Emergency landing training** emergency procedures and landing to 1/3 of runway.

NOTE

During solo flights instructor is observing the student pilot on pattern and can advise by radio as necessary.

Endorsement:

Instructor will endorse the Type Rating to the Pilots Logbook, if required.

Date of Issue: 07/2011 Revision: 1.0

Aircraft Operating Instructions SUPPLEMENT No. 02

AIRCRAFT DESCRIPTION

Registration: **CC-AUV**

Serial number: 317/2018

This Supplement must be contained in the Aircraft Operating Instructions during operation of the airplane.

Information contained in this Supplement add or replace information from the basic Aircraft Operating Instructions in the further mentioned parts only. Limitations, procedures and information not mentioned in this Supplement are contained in the basic Aircraft Operating Instructions.

Date of Issue: 12/2017 Revision: -

Aircraft Operating Instructions

0 TECHNICAL INFORMATION

This Supplement adds information necessary for airplane operation with equipment installed in the airplane BRISTELL S-LSA of S/N 317/2018.

0.1 Record of revisions

No changes.

1 GENERAL INFORMATION

No changes.

2 OPERATING LIMITATION

2.4.3 Oil

NOTE: Type of oil used by aircraft manufacturer :

Aeroshell OIL SPORT PLUS 4

2.4.4 Coolant

NOTE: Type of coolant used by aircraft manufacturer:

Castrol Radicool NF

Mixture ratio coolant / water 1:1.5 litres (40%) (-25 °C)

Max. Coolant temperature: 120 °C (248 °F)

3 EMERGENCY PROCEDURES

No changes.

4 NORMAL PROCEDURES

No changes.

5 PERFORMANCE

No changes.

Date of Issue: 12/2017 Revision: -

6 WEIGHT AND BALANCE

No changes.

- 7 AIRPLANE AND SYSTEMS DESCRIPTION No changes.
- 8 AIRPLANE HANDLING, SERVICING AND MAINTENANCE

No changes.

Date of Issue: 12/2017 Revision: -